Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Algorithms Mol Biol ; 18(1): 16, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940998

RESUMO

BACKGROUND: Evolutionary scenarios describing the evolution of a family of genes within a collection of species comprise the mapping of the vertices of a gene tree T to vertices and edges of a species tree S. The relative timing of the last common ancestors of two extant genes (leaves of T) and the last common ancestors of the two species (leaves of S) in which they reside is indicative of horizontal gene transfers (HGT) and ancient duplications. Orthologous gene pairs, on the other hand, require that their last common ancestors coincides with a corresponding speciation event. The relative timing information of gene and species divergences is captured by three colored graphs that have the extant genes as vertices and the species in which the genes are found as vertex colors: the equal-divergence-time (EDT) graph, the later-divergence-time (LDT) graph and the prior-divergence-time (PDT) graph, which together form an edge partition of the complete graph. RESULTS: Here we give a complete characterization in terms of informative and forbidden triples that can be read off the three graphs and provide a polynomial time algorithm for constructing an evolutionary scenario that explains the graphs, provided such a scenario exists. While both LDT and PDT graphs are cographs, this is not true for the EDT graph in general. We show that every EDT graph is perfect. While the information about LDT and PDT graphs is necessary to recognize EDT graphs in polynomial-time for general scenarios, this extra information can be dropped in the HGT-free case. However, recognition of EDT graphs without knowledge of putative LDT and PDT graphs is NP-complete for general scenarios. In contrast, PDT graphs can be recognized in polynomial-time. We finally connect the EDT graph to the alternative definitions of orthology that have been proposed for scenarios with horizontal gene transfer. With one exception, the corresponding graphs are shown to be colored cographs.

2.
Algorithms Mol Biol ; 16(1): 8, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074310

RESUMO

BACKGROUND: Advances in genome sequencing over the last years have lead to a fundamental paradigm shift in the field. With steadily decreasing sequencing costs, genome projects are no longer limited by the cost of raw sequencing data, but rather by computational problems associated with genome assembly. There is an urgent demand for more efficient and and more accurate methods is particular with regard to the highly complex and often very large genomes of animals and plants. Most recently, "hybrid" methods that integrate short and long read data have been devised to address this need. RESULTS: LazyB is such a hybrid genome assembler. It has been designed specificially with an emphasis on utilizing low-coverage short and long reads. LazyB starts from a bipartite overlap graph between long reads and restrictively filtered short-read unitigs. This graph is translated into a long-read overlap graph G. Instead of the more conventional approach of removing tips, bubbles, and other local features, LazyB stepwisely extracts subgraphs whose global properties approach a disjoint union of paths. First, a consistently oriented subgraph is extracted, which in a second step is reduced to a directed acyclic graph. In the next step, properties of proper interval graphs are used to extract contigs as maximum weight paths. These path are translated into genomic sequences only in the final step. A prototype implementation of LazyB, entirely written in python, not only yields significantly more accurate assemblies of the yeast and fruit fly genomes compared to state-of-the-art pipelines but also requires much less computational effort. CONCLUSIONS: LazyB is new low-cost genome assembler that copes well with large genomes and low coverage. It is based on a novel approach for reducing the overlap graph to a collection of paths, thus opening new avenues for future improvements. AVAILABILITY: The LazyB prototype is available at https://github.com/TGatter/LazyB .

3.
IEEE/ACM Trans Comput Biol Bioinform ; 18(6): 2177-2188, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31095495

RESUMO

Gene order evolution of unichromosomal genomes, for example mitochondrial genomes, has been modelled mostly by four major types of genome rearrangements: inversions, transpositions, inverse transpositions, and tandem duplication random losses. Generalizing models that include all those rearrangements while admitting computational tractability are rare. In this paper, we study such a rearrangement model, namely the inverse tandem duplication random loss (iTDRL) model, where an iTDRL duplicates and inverts a continuous segment of a gene order followed by the random loss of one of the redundant copies of each gene. The iTDRL rearrangement has currently been proposed by several authors suggesting it to be a possible mechanisms of mitochondrial gene order evolution. We initiate the algorithmic study of this new model of genome rearrangement by proving that a shortest rearrangement scenario that transforms one given gene order into another given gene order can be obtained in quasilinear time. Furthermore, we show that the length of such a scenario, i.e., the minimum number of iTDRLs in the transformation, can be computed in linear time.


Assuntos
Duplicação Gênica/genética , Rearranjo Gênico/genética , Modelos Genéticos , Algoritmos , Evolução Molecular , Ordem dos Genes/genética , Genoma Mitocondrial/genética , Genômica
4.
Artigo em Inglês | MEDLINE | ID: mdl-29994030

RESUMO

The preserving Genome Sorting Problem (pGSP) asks for a shortest sequence of rearrangement operations that transforms a given gene order into another given gene order by using rearrangement operations that preserve common intervals, i.e., groups of genes that form an interval in both given gene orders. The wpGSP is the weighted version of the problem were each type of rearrangement operation has a weight and a minimum weight sequence of rearrangement operations is sought. An exact algorithm - called CREx2 - is presented, which solves the wpGSP for arbitrary gene orders and the following types of rearrangement operations: inversions, transpositions, inverse transpositions, and tandem duplication random loss operations. CREx2 has a (worst case) exponential runtime, but a linear runtime for problem instances where the common intervals are organized in a linear structure. The efficiency of CREx2 and its usefulness for phylogenetic analysis is shown empirically for gene orders of fungal mitochondrial genomes.


Assuntos
Algoritmos , Rearranjo Gênico/genética , Genoma/genética , Genômica/métodos , Genoma Fúngico/genética , Genoma Mitocondrial/genética , Modelos Genéticos , Filogenia
5.
BMC Bioinformatics ; 19(1): 192, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29843612

RESUMO

BACKGROUND: To study the differences between two unichromosomal circular genomes, e.g., mitochondrial genomes, under the tandem duplication random loss (TDRL) rearrangement it is important to consider the whole set of potential TDRL rearrangement events that could have taken place. The reason is that for two given circular gene orders there can exist different TDRL rearrangements that transform one of the gene orders into the other. Hence, a TDRL event cannot always be reconstructed only from the knowledge of the circular gene order before a TDRL event and the circular gene order after it. RESULTS: We present the program EqualTDRL that computes and illustrates the complete set of TDRLs for pairs of circular gene orders that differ by only one TDRL. EqualTDRL considers the circularity of the given genomes and certain restrictions on the TDRL rearrangements. Examples for the latter are sequences of genes that have to be conserved during a TDRL or pairs of genes that frame intergenic regions which might represent remnants of duplicated genes. Additionally, EqualTDRL allows to determine the set of TDRLs that are minimum with respect to the number of duplicated genes. CONCLUSION: EqualTDRL supports scientists to study the complete set of TDRLs that possibly could have taken place in the evolution of mitochondrial genomes. EqualTDRL is implemented in C++ using the ggplot2 package of the open source programming language R and is freely available from http://pacosy.informatik.uni-leipzig.de/equaltdrl .


Assuntos
Evolução Molecular , Genoma Mitocondrial , Software , DNA Intergênico , Duplicação Gênica , Ordem dos Genes , Genes Duplicados
6.
IEEE/ACM Trans Comput Biol Bioinform ; 15(5): 1585-1593, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28574364

RESUMO

The weighted Genome Sorting Problem (wGSP) is to find a minimum-weight sequence of rearrangement operations that transforms a given gene order into another given gene order using rearrangement operations that are associated with a predefined weight. This paper presents a polynomial sized Integer Linear Program -called GeRe-ILP- for solving the wGSP for the following three types of rearrangement operations: inversion , transposition, and inverse transposition. GeRe-ILP uses variables and constraints for gene orders of length . It is studied experimentally on simulated data how different weighting schemes influence the reconstructed scenarios. The influences of the length of the gene orders and of the size of the reconstructed scenarios on the runtime of GeRe-ILP are studied as well.


Assuntos
Rearranjo Gênico/genética , Genoma/genética , Genômica/métodos , Modelos Genéticos , Programação Linear , Algoritmos , Software
7.
Artigo em Inglês | MEDLINE | ID: mdl-28114075

RESUMO

The tandem duplication random loss operation (TDRL) is an important genome rearrangement operation in metazoan mitochondrial genomes. A TDRL consists of a duplication of a contiguous set of genes in tandem followed by a random loss of one copy of each duplicated gene. This paper presents an analysis of the combinatorics of TDRLs on circular genomes, e.g., the mitochondrial genome. In particular, results on TDRLs for circular genomes and their linear representatives are established. Moreover, the distance between gene orders with respect to linear TDRLs and circular TDRLs is studied. An analysis of the available animal mitochondrial gene orders shows the practical relevance of the theoretical results.


Assuntos
Duplicação Gênica/genética , Rearranjo Gênico/genética , Genoma Mitocondrial/genética , Genômica/métodos , Animais , Artrópodes/genética , DNA/genética , Bases de Dados Genéticas , Evolução Molecular , Mutação/genética
8.
Methods Mol Biol ; 1704: 261-289, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29277869

RESUMO

Genome rearrangements are mutations that change the gene content of a genome or the arrangement of the genes on a genome. Several years of research on genome rearrangements have established different algorithmic approaches for solving some fundamental problems in comparative genomics based on gene order information. This review summarizes the literature on genome rearrangement analysis along two lines of research. The first line considers rearrangement models that are particularly well suited for a theoretical analysis. These models use rearrangement operations that cut chromosomes into fragments and then join the fragments into new chromosomes. The second line works with rearrangement models that reflect several biologically motivated constraints, e.g., the constraint that gene clusters have to be preserved. In this chapter, the border between algorithmically "easy" and "hard" rearrangement problems is sketched and a brief review is given on the available software tools for genome rearrangement analysis.


Assuntos
Algoritmos , Rearranjo Gênico , Genoma Humano , Biologia Computacional , Evolução Molecular , Ordem dos Genes , Humanos , Modelos Genéticos , Família Multigênica , Software
9.
Artigo em Inglês | MEDLINE | ID: mdl-26671795

RESUMO

In this paper, we present an integer linear programming (ILP) approach, called CoRe-ILP, for finding an optimal time consistent cophylogenetic host-parasite reconciliation under the cophylogenetic event model with the events cospeciation, duplication, sorting, host switch, and failure to diverge. Instead of assuming event costs, a simplified model is used, maximizing primarily for cospeciations and secondarily minimizing host switching events. Duplications, sortings, and failure to diverge events are not explicitly scored. Different from existing event based reconciliation methods, CoRe-ILP can use (approximate) phylogenetic branch lengths for filtering possible ancestral host-parasite interactions. Experimentally, it is shown that CoRe-ILP can successfully use branch length information and performs well for biological and simulated data sets. The results of CoRe-ILP are compared with the results of the reconciliation tools Jane 4, Treemap 3b, NOTUNG 2.8 Beta, and Ranger-DTL. Algorithm CoRe-ILP is implemented using IBM ILOG CPLEX Optimizer 12.6 and is freely available from http://pacosy.informatik.uni-leipzig.de/core-ilp.


Assuntos
Algoritmos , Evolução Molecular , Geômis/genética , Interações Hospedeiro-Parasita/genética , Modelos Genéticos , Ftirápteros/genética , Animais , Simulação por Computador , Genética Populacional , Geômis/parasitologia , Humanos , Linhagem , Filogenia , Programação Linear
10.
J Microbiol Methods ; 95(2): 129-37, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23968644

RESUMO

With the increasing complexity of model systems for the investigation of antibacterial effects of nanoparticles, the demands on appropriate analysis methods are rising. In case of biofilms grown on small particles, the high inhomogeneity of the samples represents a major challenge for traditional biofilm analysis. For this purpose, we developed a new calorimetric method which allows non-invasive and real-time investigation of the effects of nanoparticles on beads-grown biofilms which meets the requirements for an increased sample throughput. The method employs a newly developed chip calorimeter that is able to detect changes in the metabolic activity of biofilm samples within minutes. Using this novel device, the antibacterial effect of silver nanoparticles on Pseudomonas putida biofilms grown on agarose beads was investigated. The superparamagnetic properties of the embedded particles within the agarose beads allow an automated sample throughput. Growth inhibition and inactivation effects of silver nanoparticles (AgNPs) on biofilm bacteria were quantified by analyzing the metabolic heat production rate. As a result, a concentration dependent manner of growth inhibition and inactivation was found demonstrating the suitability and sensitivity of the methodology.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Calorimetria/métodos , Nanopartículas Metálicas/química , Prata/química , Prata/farmacologia , Antibacterianos/química , Biofilmes/crescimento & desenvolvimento , Fenômenos Químicos , Contagem de Colônia Microbiana , Microscopia Confocal , Pseudomonas putida/efeitos dos fármacos , Pseudomonas putida/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...